首页 > 教学教案 > 教案大全 > 说课稿 > 《分数乘整数》说课稿【优秀16篇】正文

《《分数乘整数》说课稿【优秀16篇】》

时间:

作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。我们应该怎么写教案呢?

《分数与整数相乘》教案 1

教学目标:理解整数与分数相乘的意义和算理掌握整数与分数相乘的计算方法,并能正确地计算在操作、验证、归纳等数学活动中获得成功的体验

教学准备:12厘米、16厘米、20厘米、24厘米的'纸条若干;课件等

教学重点:整数与分数相乘的意义和计算方法

教学难点:

教学过程:

一、 复习引入

1. 复习分数乘整数的意义和计算方法。

2. 复习求一个数是另一个数的几分之几。

二、 展开

1. 操作活动。出示活动内容和小组活动要求

(1) 拿出纸条,先折出它的 ,再用涂色表示它的 的长度。

(2) 用尺量一量涂色部分的长度是多少厘米。

(3) 想一想可以怎样列式来验证你的结果。

(4) 组内交流你的想法

2. 汇报

(1) 因为9÷12= ,所以12× =9。

(2) 根据汇报得到算式:16× =12、20× =15、24× =18

(3) 仔细观察这四个算式,各表示什么意义?

(4) 这几个算式都有什么特点?

3. 揭题:今天我们就来研究整数乘分数

三、教学例1、2

1.教学例1

(1)出示例1。用线段图来表示数量关系

(2)汇报、交流线段图

(3)根据线段图列对应关系

(4)要求 所对应的具体量,就是求什么?

(5)列出算式

(6)如何计算(写出过程,说明算理)

2.:求一个数的几分之几用乘法计算

3.教学例2

(1)试列式

(2)比较算式的区别

(3)补充说明计算过程中能约分要先约分

4.分数和整数相乘的计算方法

四、巩固与提高

五、课堂

《分数乘整数》教案 2

教学目标 :

1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。

2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。

3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。

教学重点:

掌握分数乘分数的计算方法,并能熟练计算。

教学难点:

理解分数乘分数的乘法意义及算理。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )

2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )

3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)

【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】

二、合作探究(小组合作,解决问题)

出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)

(一)探究几分之一乘几分之一的算理算法

1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)

求一个数的几分之几,我们可以用乘法来计算。

2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。

3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。

4. 进行交流反馈

重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固

把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。

5. 得出结果

根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?

6. 猜想计算方法

观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?

【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】

(二)探究几分之几乘几分之几的算理算法

1. 尝试猜想

请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。

2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)

3. 验证反馈

(1)请几个采用不同验证方法的学生进行一一展示。

(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)

(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的。想法。

4. 得出结论

看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】

三、展示交流(展示交流,调拨归纳)

简化计算过程

根据我们所得的结论,试着解决下面的问题

出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。

(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?

(2)乌贼30分钟可以游多少千米?

1. 读题,独立列式并解答。

2. 反馈

(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。

(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。

(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。

3. 练习

例4做一做1。

【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】

四、拓展总结(应用拓展,盘点收获)

1. 基础练习

(1)先看数再计算(练习一6、7两题)

反馈校对、纠错。

在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。

预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。

【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】

(2)完成例3、例4做一做剩下的题

反馈校对、纠错。

在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。

2. 练习提升

在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?

○ ○ ○ ○

反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。

(1)题1、题3主要引导学生从分数乘法的意义来理解;

(2)题2、题4主要是对分数计算方法的巩固。

【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】

3.拓展总结

这节课我们学习了什么?我们是怎样得出这些结论的?

没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。

【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】

《分数乘整数》教案 3

一、教学目标

1.知识与技能目标:掌握分数乘整数的两种意义及分数乘整数的运算法则。

2.过程与方法目标:理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

3.情感态度价值观目标:培养学生理解知识的能力和计算能力:培养学生逻辑推理能力,渗透择优思想。

二、教学重难点

重点:理解分数乘整数的两种意义,以及分数乘整数的运算法则。

难点:掌握分数乘整数法则的推导过程。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是分数乘整数,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

同学们,你们都喜欢过生日嘛,前几天也是小心的生日,妈妈给买了一个大蛋糕,我们一起来看一看,仔细观察这张图片,你能发现哪些数学信息?请你来说观察得非常细致,他们每人吃了2/9个蛋糕,那你们能根据这个信息提出一个数学问题吗?请你来说,你提的这个问题可真有价值,三个人一共吃了多少个蛋糕?那我们列范式就是,啊对,三个2/9是多少?所以用2/9x3。

我们一起来观察这个算式,它有哪些特点呢?请你来说,观察的非常仔细,请坐。这个算式是分数乘整数,那像这类的算式同学们会计算吗?看同学们既疑惑又好奇的表情,这节课就让我们一起走进数学王国,去探究分数乘整数的奥秘。

【新授】

活动一:

这个算式我们到底该如何结算?同学们先独立思考,再小组合作,遇到困难可以借助我们学具袋中的小圆片进行摆一摆,分一分,老子相信小杜的力量是强大的。讨论完成,以端正的坐姿来示意老师。看那个小组的方法,又好又快。开始。老师看同学们都已经坐端正了,哪位同学愿意向大家分享一下你们小组的讨论成果,老师看一组的同学手举的像小树林一样,那就1组的三号同学请你来说。你们小组的动手能力可真强,请多是运用小圆片来计算的,先把小圆片平均分成九份,每人吃了两份,一共涂了这样的三个两份,六份一共涂上了颜色。就是这个圆形卡片的6/9,所以他们一共吃了6/9个蛋糕。其他小组还有不同的方法吗?三段二号同学请你来说,你这会用联系的眼光看待问题,请坐,是运用连加的方法,2/9x3就是,啊三个2/9香加2/9+2/9袋加2/9等于6/9,也就是约分等于2/3个。谁还有不同的想法,你6组一号同学请你来说,你这方法可真有创意。赶紧上来为大家展示一下你的计算过程。

活动二:

同学们都看明白了吗?那这每一步又代表着怎样的含义呢?我们一起来探究一下。

2/9x3表示的是三个2/9相加,所以等于2/9+2/9+2/9。然后呢?对呀,我们就可以运用同分母分数加法来计算了,分母不变,分子相加变成了2/9+2,再加二。接下来我们该如何计算,谁来说一说你的想法,请你来说。小脑袋可真灵活,分子上的三个二相加,表示三个二是多少所以用乘法算式2x3。2x3等于六,所以结果等于6/9,9分之六,能够约分,我们在约分成最简分数2/3个。同学们,你们都想到这个方法了吗?赶紧带在练习本上写一写,和同桌之间说一说。

活动三:

老师看同学们都已经完成了,那我们再来仔细观察一下这个方法的阶段过程,这个六是怎么得到的呢?谁来说一说?请你来说。对呀,是2x3的积。那为什么是2x3呢?是的,以为把一个蛋糕平均分成九份,每人吃两份,三个人也就是3个2份,就是2x3。我们仔细观察,这个分数和整数叫二和三是从哪里来的?对呀,这二正好是2/9的分子,三是这个整数,看来分数乘整数,用分数中的分子去乘这个整数,分母不变。

其他同学还有更简便的方法吗?请你来说,你的小脑袋可真灵活,这样我们能约分的可以先约分,再计算,结果是一样的,像2/9x3,就等于九分加2x3,因为这九和三可以约分,我们通过约分直接就是2/3x1,,这样就更简便,而且不影响结果。同学们赶紧的用这种方法在练习本上写一写,和同桌之间互相交流一下。其实这个过程是我们思考的过程,我们在书写的时候一般都会省略不写。

结合我们刚刚探索过程,谁能来试着总结一下分数乘整数的计算方法呢?请你来说跟我解答及经验又准确,请坐。分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。

观察一下黑板上这些内容,以上就是本节课所要学习的体积和体积单位。

【巩固练习】

接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕计算一下这两道题,看哪位同学计算得又快有准确。

老师看同学们都已经完成了看来,谁来说一说第一题的答案?请你来说5/ 12,同学们都同意他的答案吗?看来这么简单的问题已经难不倒大家了,我们一起来看第二题,我们一起说出他的答案。看来同学们对这节课的知识掌握的非常扎实了请看大屏幕。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课学习到了分数运算当中一种新的运算法则,分数乘整数,用分数中的分子与这个整数相乘,得到的积作为分子,分母不变,能约分的先约分再计算。看来啊本节课上特听讲非常认真,请坐!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识思考一下,我们全班40人每人吃蛋糕的三分之一需要吃掉多少蛋糕呢?下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

教学过程 4

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

+ + =             + + =

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的`方法吗?请你自己试一试.

同学之间交流想法: + + = = 3×   ×3=

×3这个算式表示什么?为什么可以这样计算?

教师板书: + + = ×3=

二、自主探索

(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1.读题,说说 块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1: + + = = = (块)

方法2: ×3= + + = = = = (块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书: + + = ×3

(三)为什么可以用乘法计算?

加法表示3个 相� 同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。

《分数乘整数》教案 5

【教学目标】

1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。

2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。

3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。

【教学重难点】

理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。

【教学准备】

多媒体课件

【教学过程】

一、创设情境,自主探索

谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,咱们都来帮帮他,好吗?(课件出示信息)

谈话:从图中你收集到了哪些数学信息?

谈话:你能根据这组信息,提出一个数学问题吗?全班交流,

板书学生所提有价值问题:

做小鸟风筝的尾巴,一共需要多少米布条?(板书)

(2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)

【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。

二、算法交流,分析比较

(一)探索分数乘整数的意义。

1.独立思考,自主探索

谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?

学生可能会出现以下算式:(根据学生的回答课件随机出示)

xxxxx

追问:你为什么这样列式?

相加的和,也可以用乘法计算?

明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

谈话:比较

这组乘法算式,跟我们以前学的有什么不同?

导出课题:分数乘整数(板书)

【设计意图】分数乘整数的意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。

(二)探索分数乘整数的计算方法。

1.独立计算感知算法。

谈话:你能尝试计算

1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。

2. 算法交流,分析比较

谈话:你能交流一下你的算法吗?学生可能会出现以下方法:

(根据学生回答课件随机出示)

三、沟通优化,促进发展。

1.(1)算法的初步优化

谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。

学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)

谈话:比较一下这两种方法,你有什么感受?

小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。

(2) 探索计算中的简便方法

谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。

《分数乘整数》教案 6

教学片断:

师:哪些同学知道3/10×3的计算结果?

(绝大多数学生举起了手,部分同学迫不及待地说出了答案:9/10。)

师:说一说你是怎么计算的?

生1:我从书上看到,分数与整数相乘时,只要把分子与整数相乘就可以了,分母不变。所以,3×3=9,分子是9,分母仍然是10,结果就是9/10。

(举手的学生都点头表示同意生1的发言,有个别学生表示是从课外数学班的学习中了解到的。)

师:老师也同意用这个方法进行分数与整数相乘的计算。对于这个内容,大家还有什么疑问?

生2:为什么只把分子与整数相乘,分母10不和3相乘?

师:多好的问题!(这个问题正是理解算理的关键。)大家有什么想法?可以在小组内交流。

(几分钟以后,许多同学举起了手。)

生3:我是这么想的:3/10表示3个1/10相加,同分母分数加减法的计算法则是,分母不变,只把分子相加减。所以分母不变,只计算分子3+3+3,也就是3×3就可以了。

师:你能抓住分数乘整数的意义,从而将分数乘整数与分数加法的计算方法联系起来思考,真好!

生4:3/10里面有3个1/10,3/10的3倍就是有9个1/10,也就是9/10。

师:你对分数的计算单位以及分数单位的个数理解得很透彻!

生5:如果将3/10的分子和分母都乘3,根据分数的基本性质,结果还是3/10,而不是3个3/10。

师:生5从反面给我们讲明了分母不能与整数相乘的道理,谢谢你。

生6:我认为3/10等于0.3,0.3×3等于0.9,也就是9/10。所以,3/10×3等于9/10。

生7:我想给大家举个例子说明3/10×3等于9。老师拿来10支粉笔,每天用去3/10,也就是3支,三天用去9支,也就是用去这些粉笔的9/10。

师:用日常生活中的实例来理解数学,也是一种非常好的学习方法。

[反思]

在这一片断中,学生积极主动地投入到问题的研讨和解决之中,课堂气氛轻松、活泼。反思这一教学过程的成功,主要有以下两个原因。

一、尊重学生的“数学现实”。

在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论“灌输”给学生,省去了获取结论的研究过程,意在让学生问“为什么”。这时学生抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母10不和3相乘?”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。

二、实现教学学习的个性化。

每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。

《分数与整数相乘》教案 7

教学目标:

1、知识目标:

使学生理解分数乘以整数的意义与整数乘法相同。

2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。

3、创新目标:使学生学会用不同的方法解决同一个问题

4、德育目标:培养学生的讨论意识和交流意识。

教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并计算出方法并能正确运用先约分再相乘的方法进行计算。

教学难点:能正确运用先约分再相乘的方法进行计算。

教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。

教学过程:

一、导引目标

1、复习:整数乘法的意义是什么

2、思考:你能很快计算出下面算式的`结果吗?

+++++++++=

导出课题“分数乘以整数”师板书课题。

3、组织研究

(1)通过以上的观察和计算,你发现了什么?

(2)小组之间合作交流,自学例1。

讨论归纳分数乘以整数的意义和法则

二、创设条件

(一)指名到台上,按要求切西瓜。

1、将西瓜平均分成两份。问:

(1)两份合在一起,一共是几块?

(2)怎样列式计算?

+===1

×2===1

2、将西瓜平均分成四份。问:

(1)四份合在一起,一共是几块?

(2)怎样列式计算?

+++===1

×4===1

3、将西瓜平均分成八份。问:

(1)八份合在一起,一共是几块?

(2)怎样列式计算?

+++===1

×8===1

三、引导创新

计算×3=思考可以有几种计算方法,哪一种更简便一些?

四、反思

1、独立完成第2页的做一做。

谈谈自己本节课的收获,还有哪些知识没学明白。

《分数乘整数》说课稿 8

一、说学情

了解自己的学生学习的情况是设计一个优秀的教学预案的重要前提,多好的教案,如果不符合你的学生,教学过程中也会漏洞百出,事倍功半。六(1)班学生半数基础不扎实,表现在数学语言理解能力差,计算能力低,归纳能力欠缺;更有部分学生不愿意参与课常学习。因此,怎样以形式多样的教学环节吸引学生参与课常,怎么样把知识点拉近生活的数学语言,便于学生理解将成了首要考虑的东西。

二、说教材:

(一)、教学内容:

本课教学内容是人教版小学数学六年级上册第8~9页分数乘整数,例1、例2及相应做一做,练习二第1~2题。

(二)、教材地位和作用:

"分数乘整数" 是在学生初步理解了分数的意义,掌握了分数的基本性质、分数加、减法计算的基础上编排的。通过本节内容的学习能进一步理解分数的意义,为本单元学习用分数乘法解决实际问题以及分数混合运算作好铺垫。教学要求是理解分数与整数相乘的算理、掌握算法,能应用于解决实际问题中去,在探索算法、总结法则的过程中发展数学思考的能力。

(三)教学目标:

根据我对教材的以上理解我确定了本课的教学目标

1、引导学生经历知识的。迁移、自主观察、讨论、交流、推理、概括等教学活动,帮助学生主动理解分数乘整数的意义,建构分数乘整数的计算方法,培养学生的概括与推理能力,并能利用计算法则正确计算。

2、在学生经历自主学习、与他人合作,交流的过程、培养学生自学能力及主动探索的精神和与人合作的意识。

(四)、教学重、难点

重点:分数和整数相乘的意义、计算法则。

难点:引导学生总结分数乘整数的计算法则。

三、说教法和学法

教师的教是为了学生的学,教师本课以"引学——导学——辅助归纳"作为教师的参与形式,对于本节课的内容学生并不陌生,有的学生可能已经会计算了,但很多学生可能只是凭借经验或直观知道计算方法,却并不知道为什么要这样算。因此本节课教学不能仅仅满足于学生会算,更重要的是要关注学生理解分数乘整数的意义,在理解算理的基础上掌握计算方法。教学中要充分利用学生已有知识经验和认知发展水平,为学生提供从事数学活动的机会,基于以上认识,我在本节课主要采用了以下几种教学方法:

(1)问题情境法:以教材的情境设计为依托,结合学生自身的生活经验为学生创设问题情境,引起学生对分数乘整数算式的关注,激发学生学习的兴趣和问题意识。

(2)"探究——研讨"法:当学生提出问题后,鼓励学生自己探究解决问题的方法,学生通过调动已有的知识储备,从而得到用加法及用乘法两种解决问题的方法,然后经过观察、比较、分析、归纳等一系列活动,发现规律,理解分数乘整数算式表达的意义,培养学生的语言表达能力和抽象概括能力。

(3)合作学习法:在独立思考和自主探索的基础上,组织引导学生动手实践,通过涂一涂,看一看,比一比等活动,进行小组间的合作与交流,帮助学生在多元交流中真正理解和掌握知识,教学中充分发挥小组合作的优势,让每一个学生都有发言的机会,从而真正理解分数乘整数的算理。

教学过程:

三、说教学过程

教学过程是教师引领学生走进知识,并用已有的知识能力解决每一个情境中大家提出的新问题,逐步形成新知识,并在研究的过程中引发思维的火花,增长新智慧,形成新能力。本节课我主要设计了"引入设疑——作图解疑——实践归纳——应用深化"四个教学程序:

(一) 说说引入

① 5个12的和是多少?怎样列式?(12×5)

② 6个0.5的和呢?(0.5×6)

③ 3个1/7的和是多少?你会列式吗?(1/7×3)

教师由整数乘法到小数乘法再到分数乘整数,学生能够很快写出算式,但这个算式表示什么呢?如何运算呢?运算有何规律呢?这些问题将学生学习的欲望一下子提上来了,更好完成以下教学。

(二)说说 合作探究、归纳解疑

例1:人跑一步的距离相当于袋鼠跳一下的2/11,人跑3步的距离是袋鼠跳一下的几分之几?

出示例题,以学生分组画线段图为载体,理解分数意义,分数乘整数的意义,算理,初步归纳:

(1)分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

(2)分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(三) 运用新知、实践归纳

例2: 3/8×6(学生独立计算)

灵活运用例2,把它当作是刚才学习的分数乘整数的一个练习,分小组探讨完成,并找出它与例1的相同的地方和不同的地方,板书后请学生评价三位同学的做法,判别最优方法。这一教学片断意在调动学生运用新知解决问题,提高学生参与学习的积极性。同时让学生归纳出"在计算分数乘整数时,能约分的可以先约分,再计算".

⑵成果展示:生1: 3/8×6= 3x6/8 = 18/8

生2: 3/8 ×6= 3x6/8 = 18/8 = 9/4

生3: 3/8 ×6= 3x6/8 = 9/4 (先约分,后乘)

(四)说练习应用深化

练习主要有三个:

(1)分数乘整数的意义"看图写分数乘整数算式"

(2)计算练习

(3)判断练习

以上练习再一次帮助学生主动理解分数乘整数的意义,建构分数乘整数的计算方法,培养学生准确的计算习惯。

(五)说反馈总结:今天这节课我们学习的什么内容?你有什么收获?

让学生自己说说本节课的收获,既是对本节课所学知识的回顾与整理,又可以培养学生的概括表达和自我评价的能力。

四、说板书

分数乘整数

2/11×3= 2/11+2/11 +2/11 = 2+2+2/11=2x3/11 = 6/11

分数和整数相乘,用分子和整数相乘的积作分子,分母不变。

《分数乘整数》说课稿 9

一、说教材

说教材的地位和作用

本节课是苏教版小学数学六年级上册第38———39页例1、练一练。练习八第1至5题。

“分数乘整数”是在学生初步了解了分数的意义,掌握了分数加减法计算的基础上编排的,把它安排在这一节,能进一步理解分数的意义,为下面学习分数除法打下扎实的基础。通过学习“分数乘整数”理解分数与整数相乘的算理,掌握算法,能应用于解决实际问题,并在探索算法,总结法则的过程中发展数学思考的能力.

二、说教学目标

按《新课程标准》要求,我所设计的三维目标是:

1、让学生从实际入手,掌握分数和整数相乘可以表示求几个相同加数的和的简便运算的意义和计算法则,知道计算时能约分的先约分再相乘比较简便。

2、学生通过探索、交流、比较、培养学生的类推、比较和概括等思维能力,使学生经历与他人合作、交流的过程,培养学生自主探究的精神和与人合作的意义。

3、让学生领悟到数学来源于生活,体验数学与生活的关系,培养学生参与实践活动,将数学知识运用于生活的意识。

教学重点:分数和整数相乘的意义、计算法则。

教学难点:引导学生归纳分数乘整数的计算法则。

三、说教法和学法

在教法的运用上,我以新课标的。理念为指导,并结合本节课的实际,采用观察比较法、实践操作法、合作交流法,并恰当运用多媒体进行直观形象的辅助教学。

在学法上,数学课程标准提出有效的数学学习活动不能单纯地依赖模仿与说教,动手实践,自主探究与合作交流是学习数学的重要方式,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在实践中学会学习,在这节课中,我采用小组合作的学习方式,组织引导学生动手实践,自主探究,合作交流,通过“涂一涂”,“看一看”,“比一比”等有趣的活动,培养学生的创新意识和体现“做数学”的乐趣。

四、说教学环节

数学课程标准明确规定,数学教学从以获得知识为首要目标转变为以关注的发展为本的思想,我特设计以下的教学过程。

(一)、创设情境,导入课题

谈话:前几天国庆节的时候,我们班小花同学为了美化自己的教室,开始动手制作绸花。已知制作一朵小绸花用了3分米的绸带,小军做4朵这样的绸花一共用多少分米绸带?可以怎么列式?(设计图,归纳提炼加法与乘法的联� )

(二)、教学新课,自主探究,归纳总结规律

1、出示例1图,标出长是1米,做一朵小绸花用1/10米绸带,小芳做3朵这样的绸花,一共用几分之几米的绸带?表示啥意思呢?

学生通过涂色、交流,说出其结果是3/10米绸带,教师再引导学生自主探究,引用乘法计算。

2、方法探索,(1)让学生尝试计算1/10x3,结合1/10+1/10+1/10,得出1/10x3=1x3/10的计算方法。(经历“分子相加,转化成分子与整数相乘”的过程,建构了新的计算方法。)

3、出示问题:做一朵大绸花用17/24米绸带,小华做12朵这样的大绸花,一共用几分之几米绸带?

学生尝试列式计算,指名板演并说列式的想法,列出17/24x12后,合作交流其计算结果,发现这个计算过程可以运用“约分”这一知识点来完善其结果。有两种计算过程,一种是得出结果后再约分,另一种是先约分再计算结果,通过讨论、对比、归纳出分数乘整数的计算法则,师生共同小结其计算法则。

(三)、巩固反馈

1、完成课本练一练,让学生自主完成,说说想法。

2、完成练习八第1~5题,学生独立完成,说说计算方法。

3、作业设计(略)

4、扩展题

(四)、课堂小结(略)

(五)、板书设计。

分数与整数相乘

分数与整数相乘,用分数的分子与整数相乘,分母不变。

用加法算:1/10+1/10+1/10=3/10(米)

用乘法算:1/10×3=3/10(米)

分数乘整数的意义与整数乘法的意义相同,就是求几个相加的和的简便运算。

《分数与整数相乘》教案 10

第二课时 分数与整数相乘

教学内容:P39-40例2,“练一练”,练习八第6-11题

教学目的:

1、让学生理解求一个数的几分之几是多少可以直接用乘法来计算

2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力 教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算 教学资源:例2的图、小黑板 教学过程:

一、导入

1、出示例2 学生看图理解题意 说说题中两个分数的具体含义 明确:以10朵绸花为单位“1”,红花的朵数是10朵的1/2,绿花的朵数是10朵的2/5

二、探索

1、学生尝试解决第(1)个问题,求红花的朵数 学生交流解决方法,明确求红花的朵数可以用除法来计算,还可以用乘法计算 由此列出乘法算式,并让学生再次算出结果

2、解决第(2)个问题 先让学生在图中按要求圈一圈 理解:求绿花有多少朵,就是把10朵花平均分成5份,求这样的2份是多少 让学生已有的。知识来解答 交流:求10多的2/5是多少,也可以用乘法来计算

3、引导学生比较两种计算方法 使学生明白:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少 计算10*2/5时,要先约分,实际上也就是先用10/5,求出1份是多少,再乘2求出2份是多少

4、小结:求一个数的几分之几是多少,可以用乘法计算

5、“练一练” 第1题先让学生根据题意涂色,在列式计算 第2题先让学生理解题意,再填空

三、练习

1、练习八第6题 先让学生独立解答后再交流,比较,教案 分数与整数相乘,教案《教案 分数与整数相乘》。

体会到:求一个数的几分之几是多少与求几个相同数连加的和,都可以用乘法来计算

2、练习八第7题 学生先独立计算再交流

3、练习八第8题 学生独立解答并说说是怎样思考的

4、练习八第9题 先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。 估计天数的多少,可以直接比较分数几个分数的大小。 将计算结果与估计结果进行比较,看估计是否正确。

5、练习八第10题 先让学生看图计算,再组织学生说说三个问题有什么相同的地方。

6、练习八第11题 学生先独立解答,再进一步思考:如果不计算,你能比较出参加三项比赛的人数哪一项最多,哪一项最少吗?

四、全课总结

教学重点 11

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

《分数乘整数》说课稿 12

一、说教材

1.教材简析;

本节课是在学生理解整数乘法的意义,掌握整数乘法的计算方法;理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的。通过本节课的学

这部分教材在编排上有以下几个特点:

(1)把计算学习和解决问题有机结合。

(2)注重计算方法的探索过程。

2.学情分析:

对于本节课的内容有的学生并不陌生,有的可能已经会计算分数与整数相乘的算式。但是,这节课的学习对于他们来说并不多余。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要关注学生理解为什么可以这样算。

3.教学目标

基于教材特点与学生的学情分析,本节课的教学目标确定如下:

知识与技能:了解分数和整数相乘的意义,知道"求几个几分之几相加的和"可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,学会正确的计算。

过程与方法:通过观察比较等体验性活动,引导学生归纳分数乘整数的计算方法,培养抽象概括的能力。

情感态度与价值观:让学生参与知识的产生和发展的过程,增强学生积极的数学情感,以及学好数学的愿望和信心。

教学重点:知道"求几个几分之几相加的和"可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,理解分数与整数相乘的算理。

教学难点:让学生探索、发现能先约分的要先约分,再相乘,这样计算比较简便,而且能减少计算的错误。

二、说教法、学法

根据教学内容的特点以及学生学习的现状,为了有效的突出重点,突破难点,这节课采用自主探究、合作交流的学习方式,让学生在观察的基础上,进行分析、综合、抽象和概括,进而总结分数与整数相乘的计算方法,让学生感受由直观到抽象,由个别到一般的学习模式,学会独立思考,积极交流,实现学习者自觉、积极、主动地建构新知。教师在整个过程中通过创设情境,引导启发,调动学生的积极性让全体学生参与整个学习活动。

三、说教学过程:

下面再具体说一下教学环节的设计:

(一) 以旧引新,唤醒认知

首先出示如:4/9+4/9+4/9= 2/7+2/7+2/7+2/7=

让学生先计算,然后思考:这些算式有什么特点,还可以用怎样的形式表示?

【设计意图:本节课的知识基础是整数乘法的意义和计算方法,分数加法的计算等。由于时间关系,学生可能对于上述知识点有些遗忘。通过复习热身,试想唤醒学生对乘法的意义以及分数加法计算的认知,调动学生的知识储备,以此促使学生自然进入学习新知的角色。

(二)情境设疑,探索新知

1.创设情境:出示例1:人跑一步的距离相当于袋鼠跳一下的2/11,人跑3步的距离是袋鼠跳一下的几分之几?

再出示:例1中的线段图,先让学生自主探究:可以怎样列式?为什么?怎样列式更简便些?练习复习准备中的题,你有什么新的认识?再让学生小组内交流,最后全班交流。

估计学生可能会列出加法算式:2/11+2/11+2/11=也可能列出乘法算式:2/11×3=

教师在巡视的过程中,注意用加法列式的同学,交流时,指名其先说,并计算出得数。而后再请用乘法算式列式的同学回答。首先追问学生怎么想到用乘法计算?让学生明确相同的分数连加,也可以用乘法表示。通过这第一次的追问,帮助学生理解分数乘整数的意义。

而后再请所有的学生一起思考:2/11×3的得数怎么求。估计学生中一定会出现直接会用2/11的分子2与整数3相乘作分子,用11作分母的计算方法。如果出现这种情况,教师要再一次追问,为什么能这样进行计算?有的学生可能借助图说明算理,有的可能根据乘法和加法的联系来阐述原因。但不管哪一种原因,最后教师都要归纳到分数乘整数的意义角度,即2/11×3就是2/11+2/11+2/11,等于2+2+2/11,就是2×3/11.通过这两次追问,让学生理解分数乘整数的算理。

【设计意图:在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。所以,在这部分的教学中,我通过直观操作,连续追问,帮助学生由"实物感知"向"算理理解"的自然过渡,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,让学生知其然,知其所以然。】

2.自主练习,突破难点:

出示例2: 3/8×6=

让学生自己做,再指名展示。肯定会出现"先计算再约分"和"先约分再计算"两种方法。这时就要引导学生进行比较:比较这个算式的两种计算过程,你发现它们有什么相同的地方?有什么不同的地方?

第一种方法是先计算,计算结果不是最简分数的,再约成最简分数;第二种方法是先约分,再算出结果。说明:两种方法都是可以的。计算结果不是最简分数的,要约成最简分数。

出示一组判断题:

(1)2/51×17=34/51 (2)3/4×3=1/4

(3)5/12×6=5×6/12=5/2 (4)5/6×4=20/6=10/3

比较:�

请同学们注意约分的书写格式:在约分时,约得的数要与原数上下对齐。

【设计意图:虽然在五年级教学分数的基本性质以及分数的加减法,要求学生都要将计算结果约成最简分数。但是在历次作业和检测中,仍然有相当一部分学生由于结果不是最简分数,或者数据较大约错了而导致失分。可见,学生没有化成最简分数的'意识,没有养成这种习惯,约分的能力也欠缺。所以这部分的教学设计重在帮助学生突破这一难点。学生在练习时出现两种计算方法,首先要先肯定两种计算过程都是正确的,明确计算结果不是最简分数的,要约成最简分数。接着根据同学们在作业中容易出现的一些问题,出示一组判断题:(1)的结果没有约分成最简分数;(2)是将分子与整数约分,是错误的约分方法;(3)是先约分再计算,是正确的;(4)是先计算再约分,也是正确的。通过这组题的练习,让学生在比较中感受到:先约分再计算,可以使计算时数据小一些,就会减少计算的失误。所以提倡学生在今后的计算中采用这种"先约分再计算"的方法。】

3.总结归纳:分数和整数相乘可以怎样计算?先同桌商量,再全班交流。

(三)分层练习,强化认知

为了帮助学生巩固新知,我安排了三个层次的练习:

1.巩固分数和整数相乘的意义。

主要是完成教材第9页"做一做"中的第1题和第2题。

第1题,先让学生独立完成,再指名学生板演解答过程,让后集体订正。

第2题,让学生看图先填一填,再说说自己的算理。

2.巩固分数乘整数的算理和算法。

教科书第12页练习二中的第1题

强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。

3.结合实际,解决问题。

"做一做"中的第3题,这一题是分数与整数相乘的实际应用题,

【设计意图:通过练习让学生把分数和整数相乘的意义,分数与整数相乘的计算方法有机结合起来。以此体会学习数学的价值,体验数学与生活的联系!】

课堂作业:练习二中的第2题、第3题

(四)课堂总结:这节课你有哪些收获?

说板书设计

分数与整数相乘

2/11×3=2/11+2/11+2/11=2×3/11=6/11

3/8×6=3×6/8=9/4

意义:表示几个相同分数相加的和。

计算方法:分母不变,分数的分子和整数相乘作分子。

注意:分子、分母能约分的,可以先约分。

【设计意图:教师的板书是整堂课主题的体现,我这样板书是让学生能更好地理解分数乘整数的意义和算理。】

通过这节课,我力求达到如下效果:在谈话中引出例题,激发学生学习的兴趣,能熟练掌握分数乘整数的计算方法,让学生知道学习分数乘整数可以解决生活中的许多问题。

总之本节课的教学,我紧紧抓住整数乘法的意义和分数乘整数的意义地联系,让学生大胆地猜想、尝试、讨论等活动来突破重难点,培养了学生的概括能力和语言表达能力。

《分数乘整数》教案 13

【教学目标】

知识与能力:

1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

过程与方法:

首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。

情感态度价值观:

通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。

【教学重难点】

1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

2.引导学生总结分数乘整数的计算法则。

【教具、学具】

教具准备:多媒体课件、刻度尺。

学具准备:画图纸、刻度尺、铅笔等相关绘图工具。

【教学过程】

一、铺垫孕伏

(一)出示复习题。

1. 口答:

5个12的和是多少?

10个23的和是多少?

4个0.5的和是多少?

2. 整数乘法的意义是什么?

3.计算:

计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

(二)引出课题。

象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)

二、探究新知。

(一)教学分数乘整数的意义。

出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?

指名读题。

1.分析演示:

每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。

问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)

2.观察引导:

这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

3.比较 和12×5两种算式异同:

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:

相同点:两个算式表示的意义相同。

不同点: 是分数乘整数,12×5是整数乘整数。

4.概括总结:

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

(二)教学分数乘整数的计算法则。

PPT出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。

1.推导算理:

由分数乘整数的意义导入。

表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)

观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。

3.概括总结:

请根据观察结果总结 的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

(三) 反馈练习:

1.看图写算式。

订正时让学生说出乘法的意义各表示什么?

2.口答列算式:

=( )×( )

3个 是多少? 5个 是多少?

订正时让学生说一说为什么这样列式。

三、全课小结

这节课我们学习了什么?引导学生回顾总结。

【板书设计】

分数乘整数

+ + + = = = (个)

= = (个)

《分数乘整数》教案 14

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程()

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

+ + = + + =

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法: + + = = 3× ×3=

×3这个算式表示什么?为什么可以这样计算?

教师板书: + + = ×3=

二、自主探索

(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?

1.读题,说说 块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1: + + = = = (块)

方法2: ×3= + + = = = = (块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书: + + = ×3

(三)为什么可以用乘法计算?

加法表示3个 相� 同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。