《《圆柱的体积》教学设计及教学反思优秀17篇》
在快速变化和不断变革的新时代,我们都希望有一流的课堂教学能力,反思过去,是为了以后。反思应该怎么写呢?
《圆柱的体积》教学反思 1
本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的。体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
反思不足:
1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。
2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。
3、数学要应用于生活,应该多出些有关生活实际的练习题。
圆柱的体积公开课 2
教材简析:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具,多媒体课件
教学过程 :
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。(课件显示)
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。C、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡) 高(m) 圆柱体积(m3)
6 3
0.5 8
5 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三。巩固反馈
1. 求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,切实体验到数学就存在于自己的身边。)
四。拓展练习
1. 一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(结果保留π)
2. 一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)
五。课堂小结:
1. 谈谈这节课你有哪些收获。
2. 解题时需要注意那些方面。
(设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。)
六。布置作业
1. A册习题2.7
2. 拓展练习2题
教学反思: 本节课的教学体现了:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生观察、思考、说理,调动多种感观参与学习;三、正确处理"两主"关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。达到预期效果,不足处学生讨论时间控制太少,课后作业 个别学生还是对公式不会灵活应用。
圆柱的体积 教案 3
一、复习。
1、听算。
1π——10π、16π、25π的值。
2、口答(开火车)112——202
二、新授。
(一)圆柱体体积的推导。
1、师:我们学习过哪些立体图形?
生:长方体、正方体。
师:长方体体积怎样求?
生:“长方体体积=长×宽×高”
师随即板书。
师:正方体体积怎样求?
生:“正方体体积=棱长3”
师随即板书。
师:长方体、正方体一个通用的公式是怎样的?
生:长方体或正方体体积=底面积×高。
师随即板书。
师:用字母表示为v=sh
2、师:今天我们来学习和研究“圆柱体的体积”,板书课题。
师:能不能把圆柱体转化成我们学过的长方体或正方体来计算呢?
生:能。
师:怎样转化?
生:
师:大家先想一想,学习计算圆面积时是怎样把圆变成已学过的图形再计算面积的?
生:把圆平均分成许多小扇形,再拼成一个近似的长方形,最后计算出长方形的面积,也就得出了圆的面积。
师:怎样把圆柱体转化成我们学过的图形来计算出它的体积呢?大家讨论讨论。
师:谁能把讨论的情况说一说?
生:把圆柱体从上到下平均分成许多小扇形再切开,然后拼成一个长方体或正方体,最后计算出长方体的体积,也就得到圆柱体的体积。
3、师:谁愿意跟老师合作演示这一过程?
4、师生一起演示教具。并由学生展示。
5、师:同学们看了演示过程回答4个问题:
a、什么变了?什么没变?
生:形状变了,体积没变。
师:b、长方体的底面积与圆柱的底面积有何关系?
生:相等。
师:c、长方体的高与圆柱体的高又有何关系?
生:相等。
师:d、长方体的体积=底面积×高,那么圆柱体的体积怎样计算?
生:圆柱体的体积=底面积×高。
师:读、背各一次。
师:用字母v柱表示圆柱的体积,s表示底面积,h表示高,它的字母公式为:
v柱=sh,大家读、背、写各一次。
(二)圆柱体体积公式的应用。
1、师:要求圆柱体的体积需要知道哪些条件?
生:需要知道底面积和高。
2、师:请读例4,一根圆柱形钢材,底面积是50cm2,高是21m,它的体积是多少?
师:用手势表示有几个条件,要求几个问题?谁能求出它的体积?
生:2.1m=210cm
50×210=10500(cm)3
师:还可以怎样表示?
生:50×210÷1000=10.5(dm)3
师:还有别的表示法?
生:50×210÷1000000=0.0105(m)3
师:为什么要分别除以1000和1000000?
生:
师:相邻体积单位的进率为1000,面积单位100,长度单位10,并且是低级单位化成高级单位用除法计算,三个结果任选一个即可。全体同学一起说答。
3、师:想一想,如果已知圆柱底面的半径r高h,怎样求圆柱的体积?
生:用r2×π×h等于圆柱的体积。
师:随即板书v柱=πr2h 练习一题
已知r=5cm h=10cm 求v柱,第一名演板。
师:谁再出一道类似的题,让大家练习?
生:r=10cm, h=5dm, 求v柱。
师生一起评点
4、师:如果告诉直径和高怎样求体积呢?
生:用直径÷2得半径,再用半径的平方乘以π乘以高。
师随即板书(d÷2)2πh=v柱
师:请读例5,一个圆柱形水桶,从里面量底面直径是20cm,高是25cm,这个水桶的容积是多少立方分米?
师:用手势表示有几个条件,要求几个问题?
师:怎样求?
生:(20÷2)2×3.14×25
=100×3.14×25
=314×25
=7850(cm)3
=7.85(dm)3
答:它的容积有7.85dm3。
5、师:我们已经会求圆柱体的体积了,现在考考你们,请做p37,1、2,前两名的演板。(学生演板后师生评点)。
三、巩固并拓展
1、师:还有可能告诉哪些条件求圆柱体的体积?
生:还有可能告诉底面周长和高求体积?
师:怎样求?
生:周长÷π=直径,直径÷2=半径,半径的平方乘π乘高。
师随即板书:(c÷π÷2)2πh=v柱
师:谁出题让大家练习?
生:c=12.56cm h=5cm。
师生一起评点:
(12.56÷3.14÷2)2×3.14×5
=12.56×5
=62.8(cm)3
2、师:还有可能告诉哪些条件,求圆柱体的何种?
生:还有可能告诉,周长和侧面积,求体积。
师:怎样求?大家讨论。
生:侧面积÷周长=高,周长÷π÷2=半径
用半径的平方乘π乘h等于体积。
师随即板书:
s侧÷c×(c÷π÷2)2π=v柱。
师:谁能出题大家练习?
生:s侧=12.56cm2,c=12.56cm,求体积。
师生一起评点:
12.56÷12.56×[(12.56÷3.14÷2)2×3.14]
=1×[12.56]
=12.56(cm)3
3、师:还有可能告诉哪些条件求圆柱体的体积?
生:告诉s侧和高,求体积。
师:怎样求?大家讨论。
生:s侧÷高=周长,用周长÷π÷2等于半径,用半径的平方乘π乘高等于体积。
师随即板书:
(s侧÷h÷π÷2)2×3.14×h=v柱
师:谁出题大家练习?
生:s侧=28.26cm2,h=1dm,求体积。
师生一起评点。
(28.26÷10÷3.14÷2)2×3.14×10
=0.452×3.14×10
=20.25×3.14×10
=635.85(cm)3
《圆柱的体积》教学反思 4
圆柱的体积教学反思
本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
圆柱的体积教学反思
圆柱的体积教学是小学几何知识的重头戏。教学这节课时,我首先搜集了网上的大量课例,想寻找 一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能够为整节课的教学服务呢?想了好几套方案最后还是采用谈话法引出直柱体,再从直柱体牵出圆柱体,由此带出圆柱的体积的。 板书“圆柱的体积”课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体、正方体体积计算方法之后,再接着探究。这样由平面图形到立体图形,过度自然、流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。
二、 建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程。学生虽然没有亲身经历,但也一目了然。
三、 练习层层递进,弱化繁琐计算
为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:
1.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:v=sh。
2.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:v=πr²h。
3.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这
一公式:v=π(d/2)²h。
4.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:v=π(c÷π÷2)²h。
在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法。课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器。所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。
圆柱的体积教学反思
本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学时,重点加强了学生的动手操作,帮助学生理解公式的来源。从整个过程可以看出:学生是聪明的,是有创造力的。
在新授过程中,我主要给学生提供了学具,让同桌合作动手拼摆,自行研究发现圆柱的底面积、高与拼成的近似长方体的底面积、高之间的关系,从而根据体积关系推导出圆柱体的体积计算公式。当学生面对这些情景时,能迅速从圆的面积计算公式推导过程中检索出相关知识,根据已有知识推出新的结论。尽管当时有的同学推导出了“错误答案”,但这些错误也是有价值的,它闪烁着学生探索的智慧的火花,折射出了学生的创造精神。我当时给予了他们充分的肯定,及时保护了他们的探究精神。因为学生就是在不断发生错误,不断纠正错误的过程中自信的成长的。
在练习的过程中,我重点让学生尝试去探索解决了如何计算“一支粉笔的体积“和”水桶的容积“这类日常生活中的问题。当时出现了两种算法。有位同学就提出了“两种算法的误差这么小,这两种算法都是可行的”。由于计算要求的结果是一个大约的数值,用这两种方法都获得了相同的结果,所以他得出了这样的结论,可喜可贺!可正确的计算方法并非如此,就在这位同学沾沾自喜之时,我马上反问道“结合这两种形体,� 接着组织学生展开讨论,联想到这两种形体的特征,找到了答案。使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通的。懂得了知识并非是一成不变的。如果我当时不提出异议,也不加以说明,就会给学生造成“圆台的体积也可以利用圆柱的体积计算公式来计算”的错误认识,对学生的后续学习会造成不利的影响。
这样的教学,使学生在探索过程中虽不能很快获得结论性的知识,但却让他们尝试了科学探究的方法与过程,形成了良好的思维品质,增进了情感体验。就学生的长远发展而言,谁能说让学生经历这样的探究过程不比获得现成的结论知识更富有积极的意义呢?从整个过程来看,谁又能说我们的孩子不是聪明的,富有创造力的呢?
《圆柱的体积》教学反思 5
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同爱们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“对我们有帮助吗?”“你有什么发现?”“你是怎么想的。?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自己尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。
本节课我采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
数学教案:圆柱的体积 6
一、情景引入
1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
2、提问:“能用一句话说说什么是圆柱的体积吗?”
(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)
二、自主探究
1、比较大小、探究圆柱的体积与哪些要素有关。
(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?
(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。
(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)
(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因� )
2、大胆猜想,感知体积公式,确定探究目标。
(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。
(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。
(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?
(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的'体积可能也是用底面积乘高来计算。
(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)
(设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)
4、确定方法,探究实验,验证体积公式。
(1)、首先要求学生利用实验工具,自主商讨确定研究方法。
(2)、学生通过讨论交流确定了两种验证方案。
方案一:将圆柱c放入水中,验证圆柱c的体积。
方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。
(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)
(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?
(5)、学生汇报:实验的结果与猜想的结果基本相同。
(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)
(7)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
(8)、学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况:
v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)
《圆柱的体积》教学反思 7
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。从本节课教学目标的达成来看,较好地体现了以下几方面:
一、注重知识之间的内在联系。
圆柱的体积的导入,先让学生回忆“长方体、正方体的。体积都可以用它们的底面积乘高来计算”,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的,并让学生建立起更深层的空间几何概念。
二、引导学生经历知识探究的全过程。
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把柱转化成长方体。那么怎样来切割呢?此时利用生活中的“萝卜”引导学生思考。同学们有了圆面积计算公式推导的经验,经过思考得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。并利用多媒体动画演示,重现推导过程加深学生印象。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程中,认识得以升华(较抽象的认识——公式)。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
本课中还存在很多不足在例如探究过程中没有充分的给予学生说一说、指一指的时间,在引导学生思考已知圆柱底面半径(r)和高(h)、已知圆柱底面直径(d)和高(h)、已知圆柱底面周长(c)和高(h)三种情况时,教师引导过多,应给予学生更充分的思考空间,让其考虑如果没有底面积,知道哪个条件也可以求圆柱体积。最后,在练习中缺少反馈,学生做完练习后,应及时做到直观反馈,总结优缺点,指导学生做题。
《圆柱的体积》教学反思 8
在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节课的教学,我觉得有以下几个方面值得探讨:
一、联系旧知,导入新知。
圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。
二、动手操作,探索新知。
学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先利用模型把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。
三、课件展示,加深理解。
为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。”但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。
四、分层练习,发散思维。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
《圆柱的体积》教学反思 9
本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。
1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式V=Sh,猜想圆柱的体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的'实际问题。
2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
3、本节课中,我最大的遗憾就是没有采用多媒体课件。 当然,今天我在教学中,确实有许多的不足。比如,将圆柱体切割成若干等份,等份越多,分得越细,就越接近于长方体。倘若使用了多媒体课件演示,或许效果更明显。
总之,今天教学中的不足,我会不断改进。既面向全体学生,又注重不同学生的不同发展,设计更精、更符合学生发展的梯度问题,让他们在有限的时空内愉快学习、成长!
《圆柱的体积》教学反思 10
在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节
课的教学,我觉得有以下几个方面值得探讨:
一、联系旧知,导入新知。
圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。
二、动手操作,探索新知。
学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。
三、课件展示,加深理解。
为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。”但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的`转化方法。
四、分层练习,发散思维。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
但是不成功的地方也有,如学生在操作时有些学生拼的不是长方体,而是其他的形状,这里由于是上公开课的原因就没有有针对性的讲解,只做到了多数学生的指导而没有做到面向全体学生,这点我觉得在课堂上很难做到。
总之,通过这次的国培学习,使我的思想认识和课堂技能都有了新的认识,感谢国培!
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
圆柱的体积 教案 11
一、激趣引题
什么叫物体的体积?常用的体积单位有哪些?什么是物体的容积?
(出示课件)这几个立体图形你们认识吗?(认识)它们分别是什么图形?(长方体、正方体、圆柱)我们学过哪个图形的体积?(长方体、正方体)长方体的体积等于什么呢?(长方体的体积=长×宽×高)长方体的体积等于长乘宽乘高,用字母怎么表示呢?(v=abh)正方体的体积等于什么?(正方体的体积=棱长×棱长×棱长)用字母怎么表示呢?(v=a3)长方体和正方体不但有各自的体积公式,它们还有一个通用的体积公式,谁知道这个通用的体积公式是什么?(长方体或正方体的体积=底面积×高)用字母怎么表示呢?(v=sh)
同学们对于长方体和正方体的体积掌握的非常好,今天我们要学习一种新的立体图形的体积。
请同学们看,老师这里有一个杯子,是什么形状的?(圆柱)我在杯子里装了一些水,杯子里的水是什么形状的?(圆柱)如果我想知道这些水的体积是多少?你能用以前学过的方法计算出它的体积吗?(生答)
(演示)我们可以把水倒入一个长方体容器中,只要测量出长方体容器的长、宽和水面的高度,然后按照长方体体积的计算方法就能算出水的体积。
水的体积我们可以用刚才的方法来计算,但是如果是圆柱形柱子,还能用刚才的方法计算它的体积吗?(不能)看来刚才的方法不是一种普遍的计算方法,那么在求圆柱体积时,有没有一个像长方体或正方体体积那样的计算公式呢?这节课我们就来一起研究圆柱的体积。
二、探究研讨
圆柱的上下两个底面是什么形状的?(圆形)想一想:我们在推导圆的面积公式时,是怎么做的?(把圆平均分成若干偶数等份,拼成近似的长方形)(出示)我们把圆平均分成了16份,然后拼成一个近似的长方形,长方形的面积等于圆的面积,长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积=∏r×r=∏r2.
我们能把一个圆采用化曲为直、化圆为方的方法推导出它的面积计算公式,那么能否采用类似的方法将圆柱切割拼合成学过的立体图形来计算它的体积呢?如果能,猜一猜:可能会拼成什么立体图形?(长方体)
(出示)老师这里有一个圆柱体,我把它切成了同样大的16块,现在我要把它打开,看能拼成一个什么立体图形?(演示)
通过刚才的演示,我们知道把圆柱切开后能够拼成一个近似的长方体,请同学们仔细观察,把圆柱拼成长方体后,什么发生了变化?(形状)什么没有变?(体积)形状变了,大小没变,也就是说所拼成的长方体的体积和圆柱的体积之间有怎样的关系?(相等)(板书:长方体的体积=圆柱的体积)它们除了体积相等外,所拼成的长方体各部分和圆柱的各部分之间还有什么关系呢?(课件)长方体的底面积等于圆柱的底面积,(板书:长方体的底面积=圆柱的底面积)(课件)长方体的高与圆柱的高之间又有怎样的关系呢?(板书:长方体的高=圆柱的高)因为长方体的体积等于底面积乘高,所以,我们可以得出什么结论?对了,圆柱的体积也等于底面积乘高,(板书)如果用字母v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么圆柱的体积v=sh。(板书)
圆柱的体积等于底面积乘高,那么知道了哪些条件就可以计算出圆柱的体积呢?
下面我们就来应用圆柱的体积公式解决生活中的数学问题。(出示)
生读题、计算后汇报。
知道了底面积和高就能计算出圆柱的体积,那么是不是只有知道底面积和高才能计算圆柱的体积呢?(不是)知道哪些条件也可以计算圆柱的体积呢?(底面半径、直径、周长和高)我们来看下面这道例题,(出示)看图,说说你都知道了哪些条件?(生答)要想知道这个杯子能不能装下这袋奶,实际上就是求杯子的什么?(容积)计算容积和计算体积的方法是一样的,这道题中没有直接给出杯子的底面积,而是告诉我们杯子的底面直径和高,那么要想求杯子的容积,应该先求什么?(底面积)杯子的底面是一个圆形,圆的面积等于什么呢?(∏r2)所以圆柱的体积还可以用v=∏r2h来表示。(板书)下面请同学们在本上计算出杯子的容积,看能不能装下这袋奶?(生计算)谁愿意到黑板前面来计算?(指名板演、集体订正)
三。训练反馈
(一)想一想,填一填:
1、把圆柱的底面平均分成许多相等的小扇形,然后把圆柱切开,拼成一个近似的长方体,这个长方体的底面积等于圆柱的( ),长方体的高就是( )的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于( ),用字母表示为( )。
2、把一个棱长20厘米的正方体削成一个最大的圆柱,这个圆柱的底面直径是( )厘米,高是( )厘米,体积是( )立方厘米。
3、把一个高是9厘米的圆柱,截成两个圆柱后,表面积比原来增加了2.4平方厘米,原来圆柱的体积是( )立方厘米。
(二)对错我来判:
1、圆柱的底面积越大,体积越大。( )
2、长方体、正方体和圆柱的体积都可以用底面积乘高的方法计算。( )
3、表面积相等的两个圆柱,体积也相等。( )
4、圆柱的底面半径缩小为原来的二分之一,高扩大为原来的2倍,体积不变。( )
四。拓展延伸
一个圆柱原来高10分米,底面半径是1分米,被切成了如图所示形状,你会求这个物体的体积吗?
五。小结
这节课你都学会了哪些知识?
板书设计:
圆柱的体积
v=∏r2h
教学目标:
1、理解圆柱体积公式的推导过程,掌握计算公式。
2、会运用公式计算圆柱的体积,培养学生知识迁移的能力。
3、在公式推导中渗透转化的思想。
重点难点:
1、理解圆柱体积公式的推导过程。
2、圆柱体积的计算。
教学准备:课件、圆柱体、长方体、水、长方体容器、圆柱体容器
《圆柱的体积》教学反思 12
在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的问题,变书本知识为生活中的知识。
本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的'体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。
但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。
总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。
《圆柱的体积》教学反思 13
新课程观强调:
教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?我结合“圆柱的体积”一课谈谈自己的实践与思考。
[片段一]
师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1.5米,它的体积是多少?
由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:
1.5米=150厘米20×1150=3000(立方厘米)
师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米0.002×11.5=0.003(立方米)
②20平方厘米=0.2平方分米1.5米=15分米0.2×115=3(立方分米)
师:为什么会出现三种结果?
经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。
[片断二]
巩固与应用阶段,我将教材练习二中的一个填表题进行了加工组合呈现给学生这样一个表格。
学生填表后,师:观察前两组数据,你想说什么?
学生独立思考后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。
师:观察后两组数据,你想说什么?
有了前面的基础,学生很容易说出了后两组的关系。
学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。
[片段三]
教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。
[教学反思]
精心研究教材是用好教材的基础
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一]中的。例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
落实课标理念是用好教材的关键
能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再 教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。
学生获得发展是用好教材的标准
有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。
《圆柱的体积》教学反思 14
本节课教学设计从回忆旧知入手,通过猜测、观察、交流、验证、归纳等数学活动,让学生经历探索新知的全过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。
新授部分,经历了问题引入、猜测、自主探索、合作交流、验证归纳五个环节,环环相扣,步步深入。合作交流这个环节给了学生充足的时间去探索、交流,通过把圆柱切拼成近似的长方体,再对比二者的体积、底面积、高之间的联系,推导出了圆柱的体积计算公式,从而得出圆柱和长方体有着相同的体积计算公式,然后要求学生回顾一下我们是怎样得到“圆柱体的体积=底面积×高”这个结论的。经历了公式的推导过程,也让学生体验了数学问题的探索性和挑战性,感受到数学思考过程的条理性和数学结论的确定性。
课堂上,我将引导启发、自主探究与合作交流等多种教学方式相结合,借助于多媒体课件化静为动,把教师说不清道不明,学生不易理解的圆柱切拼成近似长方体的转化过程一目了然地展现在学生面前。教学设计充分体现了“以学生为中心”的。思想,真正方便了学生学习。做到根据教学内容的实际需要,充分发挥多媒体技术的优势,突出教学重点,突破教学难点,丰富了教学内容,精彩了课堂,激发了学生的学习兴趣。
学生在数学课堂上建立起新概念、习得规律之后,必须完成一定数量的数学练习题,才能巩固所学知识。本节课,我充分挖掘习题的价值,在巩固中拓展,让学生的思维不停留于某一固定的模式中,而能灵活应变,变有限为无限,让不同层次学生的思维水平在原有水平基础上都得以提升。
不足之处:课件代替了板书(由于课前班班通出现小小故障,我在打开课件时有点着急,课件出示错误,又耽误了时间,没有在黑板上板书课题)。时间分配不够合理,练习时板演学生太少(合作交流环节给了学生大量的时间去探索、交流,在练习时已经没有足够的时间了,就让一个学生板演了,致使后边的拓展提高没来得及进行,就进行检测了)。教师的评价方式单一。
改进措施:每节课要准备充分,提前候课,避免出现差错,耽误时间,练习量不够或完不成任务。课堂上要多关注中等偏下的学生,老师的评价机制要多样,让他们学会倾听,乐于学习,多给他们展示交流的机会。课堂上课件只起一个辅助作用,不能喧宾夺主。
今后还要一如继往地做好日教研,上完课及时与本组成员沟通、交流,让课堂教学更高效。
圆柱的体积⑴ 15
课题(内容)
课时
25
教学目标
1、使学生学会用一般求体积公式去解决特殊(圆柱)柱体的求积问题。
2、使学生知道计算公式,并会正确地求。
教学重点
使学生知道计算公式,并会正确地求
教学难点
计算公式的推理过程
课前准备
小黑板、投影
教学过程
1、准备题
观察下面的柱体,能否找到形状相同,面积相等且互相平行的两底面?两底面之间的距离(即高)是否处处相等。
你发现了什么?②③④都符合上面条件,这些立体图形又叫直柱体。
直柱体的体积通用公式是什么?
V柱=底面积×高
=S底h
②是(圆柱体),它的两底面是(圆)形,你会计算圆柱体的体积吗?
指名生说。
2、这种方法到底对不对呢?我们可以来验证一下。
实验:把圆柱的底面分成许多相等的扇形,然后切开,(师教具演示)再拼起来,就近似于一个长方体(分成的扇形越多,拼成的立体图形就更接近于长方体)。
师:请同学们找出圆柱的底面和高,以及长方体的底面和高。
指名生说:
长方体的底面积=圆柱的底面积
长方体的高=圆柱的高
长方体体积=底面积×高
=底面积×高
即:V圆柱=S底h
=πr2
想一想:求必须知道什么条件?
(S底、h或r、h)
接下来请同学们试一试。
3、出示例1.①一根圆木,长1.5米,横截面面积是50.24平方厘米,这根圆木的体积是多少?
学生试做,指名板演。
反馈:①1.5米=150厘米 注意:必须统一单位。
②V柱=S底h
=50.24×150
=7536(立方厘米)
答:——
②一根圆木,长2米,底面半径5厘米,这根圆木的体积是多少?
学生试做,反馈:①2米=200厘米
②V柱=πr2
=3.14×5×5×200
=3.14×5000
=15700(立方厘米)
答:——
师:请同学们比较①②两题的异同。
指名生说:相同点都求。
不同点 ①已知S底、h
②已知r、h
4、巩固练习:试一试
5、独立作业 :P27~28练一练No.1~4
板书设计 :
投 影
长方体的高=圆柱的高
长方体体积=底面积×高
=底面积×高
即:V圆柱=S底h
=πr2
学生练习:
教学后记:公式的推导过程完全可以放手让学生说,而老师则只要提供学生需要的工具即可,至于推导的方法和过程就由学生自己解决了。师可以适当的提一个问题:长方体和圆柱各部分之间有什么联系?
圆柱的体积 教案 16
教学目标:
1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
教 具:圆柱的体积公式演示教具。
教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
二、新课教学:
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
要用这个公式计算圆柱的体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
底面积(㎡) 高(m) 圆柱体积(m3)
圆柱的体积 教案 17
课题
圆柱的体积
教学课时
第5课时
教学目标
知识目标
经历圆柱体积计算公式的推导过程,理解并掌握圆柱体积计算的方法,并能正确计算圆柱的体积。
技能目标
能运用圆柱体积计算方法,解决有关的实际问题,发展学生的实践能力。
情感态度
与价值观
进一步丰富对圆柱的认识,提高空间观念。
教学重点
圆柱体积计算
教学难点
1、圆柱体积计算方法的推导。
2、借助教具演示,弄清圆柱与长方体的关系。
课前准备
圆柱体积公式推导教具
教学过程与方法
个性修改
预习检测
出示图片:
师:同学们,你们知道什么叫物体的体积吗?这些图形中,哪些图形的体积你会计算呢?
学生展开交流,明确体积的含义,复习有关长方体和正方体体积的计算公式。
自学探究
1、探究例5:
(1)猜一猜
①圆柱的体积可能怎样计算?
②计算圆柱的体积需要哪几个条件?
在猜想交流活动中,学生很可能会借助长方体、正方体体积的计算方法,推断出圆柱的体积计算方法。
得出:圆柱的体积等于底面积乘高。
(2)演示教具
①取出圆柱体模型
②将圆柱切成两半
③分别将两半均分成多个小块
④将两半模型拼成一个近似的长方体(为什么是近似的长方体?怎样可以更接近长方体?)
(3)归纳公式
①拼成的长方体的体积与圆柱的体积有什么关系?
②长方体的底面积与高分别与圆柱的底面积、高有什么关系?
③长方体的体积等于什么?圆柱呢?
学生回答,教师板书:
圆柱的体积=长方体的体积
=底面积×高
圆柱的体积=底面积×高
④如果用v表示圆柱的体积,s表示底面积,h表示高,那么圆柱的体积计算公司应该是怎样表示?
板书:v=sh
师
生
互
动
指导学生完成“做一做”
1、先让学生说说题意,明确求圆柱的体积需要具备什么条件。
2、学生独立完成并反馈。
3、拓展延伸:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以怎样表示呢?
①同桌互相交流,然后全班反馈。
②教师根据学生的回答,板书:v=πr2h
双基练习
指导学生完成练习三的第1~2题
1、第1题:先让学生独立将表格填写完整,然后全班反馈。
2、第2题:先让学生独立完成,然后全班反馈,反馈时要让学生明确:要求圆柱的体积必须具备两个条件,即圆柱的高和圆柱的底面积。
预习设计
解决问题:
1、一个圆柱形石柱、底面积是4.8平方米,高是1.2米,这块石柱的体积是多少立方米?
2、一个圆柱形水池,占地面积8.4平方米,深3米。这个水池最多能蓄水多少立方米?
3、一个圆柱形铁罐的容积是1升,高是12厘米。铁罐的底面积大约是多少平方厘米?
板书设计
圆柱的体积
圆柱的体积=长方体的体积
=底面积×高
圆柱的体积=底面积×高
=sh
=πr2h
教学反思
